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a b s t r a c t

Expression of genes associated with inflammation was analyzed
during differentiation of human pluripotent stem cells (PSCs) to
hepatic cells. Messenger RNA transcript profiles of differentiated
endoderm (day 5), hepatoblast (day 15) and hepatocyte-like cells
(day 21) were obtained by RNA sequencing analysis. When com-
pared to endoderm cells an immature cell type, the hepatic cells
(days 15 and 21) had significantly higher expression of acute phase
protein genes including complement factors, coagulation factors,
serum amyloid A and serpins. Furthermore, hepatic phase of cells
expressed proinflammatory cytokines IL18 and IL32 as well as
cytokine receptors IL18R1, IL1R1, IL1RAP, IL2RG, IL6R, IL6ST and
IL10RB. These cells also produced CCL14, CCL15, and CXCL- 1, 2, 3,
16 and 17 chemokines. Endoderm cells had higher levels of che-
mokine receptors, CXCR4 and CXCR7, than that of hepatic cells.
Sirtuin family of genes involved in aging, inflammation and
metabolism were differentially regulated in endoderm and hepatic
phase cells. Ligands and receptors of the tumor necrosis factor
vier Inc. This is an open access article under the CC BY license

nerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048,

rumugaswami).

www.sciencedirect.com/science/journal/23523409
www.elsevier.com/locate/dib
http://dx.doi.org/10.1016/j.dib.2015.10.023
http://dx.doi.org/10.1016/j.dib.2015.10.023
http://dx.doi.org/10.1016/j.dib.2015.10.023
mailto:arumugaswami@cshs.org
http://dx.doi.org/10.1016/j.dib.2015.10.023


M

T
H

D
E

E

D

D

J. Ignatius Irudayam et al. / Data in Brief 5 (2015) 871–878872
(TNF) family as well as downstream signaling factors TRAF2,
TRAF4, FADD, NFKB1 and NFKBIB were differentially expressed
during hepatic differentiation.

& 2015 Elsevier Inc.. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Specifications Table
Subject area
 Biology
ore specific sub-
ject area
Stem cell and Liver Biology
ype of data
 Tables and figures (graphs)

ow data was
acquired
RNA sequencing analysis
ata format
 Analyzed format

xperimental
factors
Human pluripotent stem cells were induced to differentiate into hepatic cells
using a three phase protocol with phase-specific cocktails of factors.
xperimental
features
PSCs were subjected to a 21 day protocol for generating hepatocyte-like cells via
endoderm induction (days 1 to 5), hepatic specification (days 6 to 15) and
hepatic maturation (days 16 to 21) phases.
ata source
location
RNA expression data was collected from stem cell differentiation experiments
performed at Cedars-Sinai Medical Center, Los Angeles, USA.
ata accessibility
 Data deposited to Gene Expression Omnibus (GEO) repository with an accession
number GSE67848.
Value of the data
� Expression profiles of inflammation-associated genes present during in vitro differentiation of
endoderm and hepatic cells are provided.

� Stem cell-derived hepatic cells are being investigated for liver regeneration. The immune and
inflammatory signatures of transplantable cells can influence the rate and severity of immune
rejection.

� Endoderm phase of cells expressed lower levels of proinflammatory interleukins, interleukin
receptors and chemokines than that of the hepatic phase cells.

� Therefore, the immature endoderm progenitor cells may elicit less immune response by the host.
� Priming of differentiated hepatic cells with immune modulatory and anti-inflammatory agents can

help enhance engraftment and therapeutic potential.
Data
The main objective is to analyze the expression of inflammatory genes in hepatic cells differ-

entiated from pluripotent stem cells. RNA sequencing analysis was performed on PSC-derived
endoderm (day 5), hepatoblast (day 15) and hepatocyte-like cells (day 21). First, we examined the
genes specific for hepatic function of the acute phase response (Fig. 1). Liver is the major source of
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Fig. 1. Expression of genes involved in acute phase response during day 15 and day 21 post-differentiation of PSCs. The
absolute expression values of each time points (Day 15 and Day 21) were used for calculating fold change with that of Day 5.
Mean values with standard deviation are shown in the graph.
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acute phase proteins [1]. During acute phase of microbial infection or other injuries, the serum
concentrations of these proteins change to mediate and regulate the inflammatory response [2,3]. As
expected, genes coding for acute phase proteins, including complement factors, coagulation factors,
serum amyloid A1 (SAA1), alpha 2-macroglobulin (A2M), hepcidin antimicrobial peptide (HAMP),
orosomucoid (ORM1 and ORM2), and alpha-1-antitrypsin (SERPINA1), were highly upregulated in the
hepatic phase cells (days 15 and 21) compared to that of endoderm cells (Fig. 1).

Subsequently, we focused on genes involved in modulating cell homing and inflammatory
responses. We observed that the hepatic cells had high levels of chemokines such as CCL14, CCL15,
CXCL1, CXCL2, CXCL3, CXCL16 and CXCL17 (Fig. 2A). Chemokines are involved in recruitment of
neutrophils, eosinophils, monocytes and T-cells to the site of injury [4–6]. This observation is
important in the context of cell therapy and can be targeted for increasing the engraftment efficiency.
On the other hand, chemokine receptors CXCR4 and CXCR7 were upregulated during the endoderm
phase. CXCR4 is considered as a marker for endoderm phase and likely involve in cell migration
during the embryonic gastrulation stage [7]. It is possible that the up-regulation of CXCL2, CXCL3, and
CXCL16 could be explained by the existence of other endoderm/mesoderm lineage induced cells
during differentiation. The multifaceted interaction of the growth factor cocktail, along with differ-
entiating hepatic cells and accompanying minor mesendoderm cell population as well as damage-
associated molecular pattern (DAMP) signals from dead cell debris in the culture can induce innate
and inflammatory responses.

Furthermore, we have also observed differential expression of Sirtuin (SIRT) family of genes during
hepatic differentiation. SIRT genes code for NAD-dependent protein deacetylases that are involved in
aging, inflammation, differentiation, cancer and metabolism [8–10]. SIRT1 gene was upregulated at
the endoderm phase, whereas SIRT2, SIRT3 and SIRT7 genes were induced at hepatic phase (Fig. 2B).
SIRT1 has been shown to play anti-inflammatory role [11].

We also noted that once the cells differentiated to the hepatic lineage phase, the genes coding for
proinflammatory cytokines and receptors were activated. The genes for IL18, IL32, IL18R1, IL1R1,
IL1RAP, IL2RG, IL6R, IL6ST and IL10RB were upregulated in differentiated hepatic cells (Table 1). IL17
family of receptors showed differential expression during differentiation. Next, we analyzed genes
participating in the TNF signaling pathway (Table 2). In the differentiated hepatic cells, TNF family
ligands (TNFSF10, TNFSF12, and TNFAIP8L3), receptor (TNFRSF10B) and downstream signaling factors
(NFKB1 and NFKBIB) were expressed at higher levels to that of endoderm cells. Interestingly, genes for
number of TNF family receptors (TNFRSF11A, TNFRSF11B, TNFRSF19, and TNFRSF25) and adaptor
signaling factors (TRAF2, TRAF4 and FADD) were down-regulated in hepatic cells. Caspase genes
(CASP 4, 6 and 8) and other signaling pathway genes important for inflammation (MAPK1, MAPK13,
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Fig. 2. Differential expression of chemokine, chemokine receptor and sirtuin genes. (A) Mean values with standard deviation of
fold change are depicted in the graph. Note that the receptor genes CXCR4 and CXCR7 were down-regulated in day 15 and day
21 hepatic cells. (B) Absolute expression values of sirtuin (SIRT) family of genes were shown in the graph with standard
deviation.
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IRF1 and NLRX1) also showed a trend of increased expression at the hepatic phase (Table 2). The up-
regulation of TNFSF10 (TRAIL) and CASP4/8 indicates that during the final phase of hepatic differ-
entiation, the supplemented factors HGF and OSM not only can promote maturation of hepatic cells
but also select hepatic cells by inducing apoptosis of non-hepatic lineage cells. The major histo-
compatibility complex (MHC) genes, human leukocyte antigen (HLA) markers, exhibited differential



Table 1
Differentially regulated cytokines and cytokine receptors.

Feature ID Gene ID Fold
change
(Day 15
vs Day
5)

Fold
change
(Day 21
vs Day
5)

P-value
(Day 15 vs
Day 5)

P-value
(Day 21 vs
Day 5)

ENSG00000150782.7 IL18 15.76 30.02 0.03 3.76E�05
ENSG00000008517.11 IL32 27.42 57.93 2.63E�03 0.12
ENSG00000196083.5 IL1RAP 39.58 56.85 4.39E�03 3.83E�03
ENSG00000160712.8 IL6R 32.12 26.58 6.22E�03 0.01
ENSG00000147168.7 IL2RG 35.63 23.98 0.03 0.17
ENSG00000134352.14 IL6ST 15.41 22.69 1.82E�05 0.08
ENSG00000137070.11 IL11RA 8.39 12.94 1.99E�03 0.1
ENSG00000056736.5 IL17RB 5.51 12.06 2.28E�03 0.05
ENSG00000145623.7 OSMR 4.17 9.66 9.99E�05 0.06
ENSG00000115604.6 IL18R1 1.18 6.92 0.32 0.03
ENSG00000115594.7 IL1R1 4.19 6.52 4.06E�03 0.04
ENSG00000163702.14 IL17RC 4.51 6.39 2.10E�03 0.01
ENSG00000243646.3 IL10RB 2.6 4.01 0.04 0.01
ENSG00000131724.6 IL13RA1 2.97 3.39 1.39E�03 0.02
ENSG00000172458.4 IL17D 1.01 1.35 0.92 0.04
ENSG00000177663.8 IL17RA �1.96 �2.6 0.01 0.01
ENSG00000240972.1 MIF �2.73 �2.67 9.35E�04 1.25E�03
ENSG00000110944.4 IL23A �8.56 �8.56 5.93E�03 5.93E�03
ENSG00000144730.12 IL17RD �10.24 �10.24 4.19E�04 4.19E�04
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regulation during the hepatic specification and maturation phases (Table 2). Detailed analysis, FPKM
values of biological duplicates, P-values and means are given in Supplementary Table 1.
1. Experimental design, materials and methods

1.1. Cells and hepatic differentiation protocol

Human embryonic stem cell (hESC) line, WA09 (H9), was obtained from WiCell Research Institute,
USA. The cell line was cultured using serum-free chemically-defined media, mTeSR1 (STEMCELL
Technologies, Canada). We utilized a feeder free culture condition with a daily media change regimen.
The cells were maintained at 37 °C with 5% CO2. We utilized a three phase protocol for hepatic dif-
ferentiation of the pluripotent stem cell line as described previously [12–14]. The objective was to
profile the transcriptome of endoderm (day 5), hepatoblast (day 15) and hepatocyte-like cells (day 21)
derived from hESCs. The PSCs were induced to endoderm with Activin A (100 ng/ml, Peprotech Inc.),
and Wnt 3A (40 ng/ml, R and D Systems) supplements in RPMI media (Life Technologies) for the first
one day and the following four days with Activin A, VEGF (10 ng/ml), bFGF (10 ng/ml) and BMP4
(0.5 ng/ml) in serum-free defined (SFD) media. From day 6 onwards, the SFD media supplemented
with VEGF (10 ng/ml), BMP4 (50 ng/ml), TGF-α (20 ng/ml), EGF (10 ng/ml), HGF (100 ng/ml), DMSO
(1%, Sigma-Aldrich, St. Louis, MO), dexamethasone (1�10�7 M; Sigma-Aldrich), monothioglycerol
(4.5�10�4 M), and ascorbic acid (50 μg/ml), was used. From day 12 onwards, TGF-α and BMP4 were
removed from the cocktail. From day 16 onwards, for hepatocyte maturation, dexamethasone, HGF,
and oncostatin M (20 ng/ml) were included in the SFD media. The differentiation was done in bio-
logical replicates and cells were harvested at indicated time points (day 5, day 15 and day 21 post-
differentiation) for RNA isolation.



Table 2
Differentially expressed genes in TNF and other inflammatory pathways.

Feature ID Gene ID Fold change (Day 15 vs Day 5) Fold change (Day 21 vs Day 5) P-value (Day 15 vs Day 5) P-value (Day 21 vs Day 5)

TNF ligands and receptors
ENSG00000121858.6 TNFSF10 4.06 11.4 0.04 0.05
ENSG00000239697.4 TNFSF12 11.82 7.99 2.85E�04 2.88E�03
ENSG00000183578.4 TNFAIP8L3 3.85 3.43 3.61E�03 2.13E�03
ENSG00000120889.8 TNFRSF10B 1.36 1.54 7.62E�05 2.90E�03
ENSG00000164761.4 TNFRSF11B �3.21 �2.01 0.04 0.01
ENSG00000127863.11 TNFRSF19 �3.13 �3.91 3.62E�04 1.68E�03
ENSG00000215788.5 TNFRSF25 �3.41 �4.07 4.63E�03 9.28E�05
ENSG00000141655.9 TNFRSF11A �6.81 �6.81 6.68E�06 6.68E�06
Intra-cellular factors
ENSG00000196954.7 CASP4 7.07 17.6 0.14 0.05
ENSG00000156711.10 MAPK13 18.33 16.96 4.81E�05 2.07E�03
ENSG00000125347.8 IRF1 1.96 3.7 0.02 1.97E�03
ENSG00000064012.15 CASP8 3.99 3.28 8.92E�03 0.01
ENSG00000100030.9 MAPK1 3.76 2.48 2.52E�03 1.08E�03
ENSG00000109320.6 NFKB1 2.45 2.45 0.02 0.06
ENSG00000160703.9 NLRX1 2.55 2.27 0.05 0.04
ENSG00000138794.5 CASP6 1.85 2.14 0.02 6.67E�03
ENSG00000104825.11 NFKBIB 1.17 1.36 0.02 3.59E�04
ENSG00000168040.4 FADD �1.48 �2.07 5.38E�03 1.62E�03
ENSG00000076604.8 TRAF4 �1.58 �2.08 0.02 8.68E�03
ENSG00000107643.10 MAPK8 �2.08 �2.09 0.01 9.92E�05
ENSG00000022556.10 NLRP2 �1.27 �3.58 3.55E�03 4.01E�03
ENSG00000127191.11 TRAF2 �4 �4.06 0.02 0.03
ENSG00000106144.14 CASP2 �4.14 �5.44 7.62E�05 3.13E�04
HLA markers
ENSG00000198502.5 HLA-DRB5 14.6 6.46 7.39E�03 0.01
ENSG00000196126.6 HLA-DRB1 10.07 4.92 6.12E�03 0.01
ENSG00000204592.5 HLA-E 2.54 4.88 0.02 6.28E�03
ENSG00000204525.8 HLA-C 1.28 1.5 0.05 0.03
ENSG00000206503.6 HLA-A �1.33 1.05 7.10E�03 0.64
ENSG00000234745.3 HLA-B �3.2 �2.02 0.02 0.03
ENSG00000179344.11 HLA-DQB1 �2.25 �2.11 0.02 0.06

Upregulated genes are shaded in grey.
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1.2. RNA sequencing and data analysis

A detailed description of RNA sequencing analysis, including RNA isolation; library preparation;
quality assessment, filtering and alignment of RNA sequencing; gene expression filtering; and tran-
scriptome analysis are provided in accompanying research paper by Ignatius Irudayam et al. [14].
Sequencing was performed on an Illumina HiSeq 2500 and obtained an average read depth of 26
million reads per sample. Quality control of raw illumina reads was done by RNASEQC [15]. TOPHAT
program was used for aligning reads to the UCSC human reference genome (hg19) [16]. Reference-
guided transcript assembly using a gene transfer file (GTF) from UCSC genes was used for calculating
gene expression. For all samples, normalized quantification of reads as RPKM ( of Reads Per Kilobase
of ORF per Million reads aligned) was calculated with Cufflinks [17] and subsequently was compiled
into a gene counts table. For gene expression filtering, we utilized raw FPKM (Fragments Per kilobase
of transcript per Million fragments mapped) values of over 1.1 to prevent overestimating gene
expression differences between groups of samples and to permit downstream analyses. Raw FPKM
values less than 1.1 were considered poorly measured. For calculating uniquely expressed genes, we
used FPKM 5 as cut-off which represents 1 transcript copy per cell [18]. Genes with minimum FPKM
value of 5 in one of the time points were included for downstream analysis. Data can be accessed
form Gene Expression Omnibus (GEO) repository using accession number GSE67848.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2015.10.023.
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