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Abstract In the twenty-first century, the first pandemic

novel human influenza A/H1N1virus (NIV) outbreak was

reported at Mexico and USA on March and early April,

2009 respectively. The outbreak occurred among human

populations due to the presence of meager or no immune

response against newly emerged viruses. The success of

vaccines and drugs depends on their low susceptibility to

the formation of escape mutants in virus. Identification of

excess, non-synonymous substitutions over synonymous

ones is a main indicator of positive Darwinian selection in

protein-coding genes of NIVs. The positive Darwinian

selection operating on each site of proteins were inferred

by computing x, the ratio of the non-synonymous/synon-

ymous substitutions [dN/dS (or) Ka/Ks], which was calcu-

lated by three different methods in terms of codon-based

maximum likelihood, branch-site and empirical Bayesian

methods under various models. Totally, nine sites from

PB2, PB1, HA, M2 and NS1 are inferred as positively

selected. The function for amino acid sites of NIVs proteins

under positive selection are inferred by comparing the sites

with experimentally determined functionally known amino

acid sites. Completely 4 positively selected sites of PB1,

HA and M2 are found to be involved in B-cell epitopes

(BCEs). Interestingly, most of these sites are also involving

in T-cell epitopes (TCEs). However, more sites under

positive selection forces are involved in TCEs than those of

BCEs. Amino acid sites engaged in both BCEs and TCEs

should be measured as highly suitable targets, because

these sites could induce the strong humoral and cellular

immune responses against targets.

Keywords Novel influenza A/H1N1 virus � Genome �
Natural selection � Amino acid function

Introduction

Humans were victims of several spells of viral outbreaks

causing flu in the course of the twentieth century. The

‘Spanish flu’ caused by the H1N1 virus killed 25–50

million people worldwide in 1918, ‘Asian flu’ by the

H2N2 virus killed 1–4 million people in 1957 and ‘Hong

Kong flu’ by the H3N2 virus killed 0.75–2 million people

in 1968. The subtypes H1N1 and H3N2 influenza viruses

still continue to circulate and may cause annual epidemics

that kill 0.25–0.5 million people worldwide (Suzuki

2006). A report states that there were the extensive

influenza outbreaks in 1173, 1510, 1580, 1729, 1781 and

1830. However the term pandemics influenza was used to

express these outbreaks since eighteenth century. Before

this, in the fourteenth century, it was described as epi-

demics. These previous outbreaks created the awareness

to the people (Potter 2001); as a result, a human infection

with influenza A virus became a nationally notifiable

disease in the United States (Smith et al. 2009) and

worldwide, since 2007. Due to the influenza, each year in

the USA, more than 200,000 patients are admitted in
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hospitals and approximately 36,000 influenza related

deaths occurred (http://www.ncbi.nlm.nih.gov/genomes/

FLU/flubiology.html).

Influenza infection in humans is characterized by the

progressive infection of lung tissue, but not the simultaneous

infection of the entire lung. Seasonal influenza infection

never progress to complete infection of the human lung

(Lazrak et al. 2009), but in the case of pandemic influenza

infection, the entire lung is affected. Efficient human-to-

human transmission is a prerequisite for any influenza A

virus to become pandemic. Furthermore subtype H1N1

viruses are known to cause the disease less frequently than

those of subtype H3N2 viruses (Ghedin et al. 2005; Zamarin

et al. 2006; Obenauer et al. 2006). In March and early April

2009, novel human influenza A/H1N1 viruses (from here, I

refer this virus as ‘NIVs’) emerged in Mexico and in the

United States, respectively (CDC 2009) and caused world-

wide pandemic outbreaks. Totally, from April to June 2009,

NIVs have been widely spread over 170 countries by human-

to-human transmissions, causing the World Health Organi-

zation to raise its pandemic alert level from 5 to 6 (Smith

et al. 2009; Qu et al. 2011; Arunachalam et al. 2012a). The

reasons for this pandemic outbreak among humans are (1)

meager or no immune response, (2) lack of previous infec-

tion and (3) constant changes in the viral genome (Webby

and Webster 2003).

Identifying the origin of NIVs might facilitate to know

about how NIVs adapt in humans and how to control the

spread of NIVs (Arunachalam et al. 2012a). Today vac-

cines and drugs exist for the prophylaxis and treatment of

influenza virus infections. Vaccines are composed of either

inactivated or live attenuated virions of subtypes H1N1 and

H3N2 human influenza A viruses as well as those of

influenza B viruses. Vaccines fail to protect the humans

from infections while antigenicities of the wild viruses

evolve continuously (Mostow et al. 1970). As a result,

vaccines need to be yearly reformulated with updated seed

strains. In addition, even when vaccine and wild viruses are

similar, escape mutants are often generated (Suzuki 2006;

Jin et al. 2005; Zharikova et al. 2005; Venkatramani et al.

2006). Recent epidemiological studies show that seasonal

trivalent inactivated influenza vaccine could provide partial

protection against NIVs (Garcia-Garcia et al. 2009;

Echevarria-Zuno et al. 2010). However, it does not stim-

ulate any immune responses against NIVs (Tu et al. 2010).

Escape mutants are often generated for drugs like aman-

tadine (Webster et al. 1986) and less frequently for drugs

like oseltamivir (Kiso et al. 2004). In order to develop more

effective vaccines and drugs that are less susceptible to the

generation of escape mutants, it is important to understand

the selective pressure acting on each site of the proteins

encoded by NIV genome. The objective of this investiga-

tion is to determine the sites in the proteins of NIVs

genome that are under the positive selection pressure,

which will ultimately be important in the effective design

of vaccines and drugs.

Materials and methods

Sequence selection

Influenza viruses are the etiological agents of ‘flu’ (Suzuki

2006; Smith et al. 1933) and are classified into types A–C,

among which, type A viruses are the most pathogenic to

humans (Suzuki and Nei 2002). On the basis of the anti-

genic properties of hemagglutinin (HA) and neuraminidase

(NA), influenza A viruses are classified into subtypes

H1–H16 and N1–N9, respectively (Arunachalam et al.

2012a; WHO 1980). Influenza A viruses possesses a single

stranded, negative sense and 8 segmented (segments 1–8)

RNA genome in an enveloped virion (Noda et al. 2006). In

order to analyze all the proteins of the NIVs, the entire

protein-coding regions were extracted from the NCBI

Influenza Virus Resource (Bao et al. 2008). Among the

eight gene segments, the five segments PB2, PA, HA, NP

and NA encode a single protein whereas rest of the three

segments PB1, MP and NS encode two proteins, namely,

PB1 and PB1–F2, M1 and M2 and NS1 and NS2, respec-

tively. Nucleotide positions 95–367 of PB1 and the entire

region (positions 1–273) of PB1–F2, positions 1–27 of both

M1 and M2 and positions 1–31 of both NS1 and NS2 are

overlapped in different reading frames. Prior to selecting

the sequences, the purge was made on the sequences with

unclear, derived from the same strains as others, laboratory

and vaccine strains, shorter sequences and sequences with

redundant stop codons. In that case, 99, 95, 97, 94, 96, 97,

58, 22, 75 and 32 sequences that differed from each other

were finally selected for positive Darwinian selection

analysis for PB2, PB1, PA, HA, NP, NA, M1, M2, NS1 and

NS2, correspondingly. The strains names and their data-

bank accession numbers of sequences used in the present

study are listed in the ST1. Due to the presence of pre-

mature stop codons in PB1–F2 at various sites such as 12,

58, 88 and 91; it has not been included for analysis.

Estimation of dN–dS

For each protein, a multiple alignment of the nucleotide

sequences was performed using MUSCLE (Edgar 2004)

under neighbor joining (NJ) cluster method implemented in

MEGA5 (Tamura et al. 2011). Estimation of selection at

each amino acid site of the proteins encoded by NIVs

genomes was inferred using MEGA5 via HyPhy (Pond

et al. 2005). The maximum likelihood (ML) statistical

method (Dempster et al. 1977) was used under Tamura–
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Nei model (Tamura and Nei 1993) with syn–nonsynony-

mous substitution type for computing dS and dN values.

The gaps and/or missing data treatment was done under

‘Use all sites’ option. Each time of this analysis, the results

of HyPhy were automatically exported directly to MEGA5,

which could be used to generate sequence-wide profiles for

further analyses (Tamura et al. 2011). For estimating ML

values, a tree topology was automatically computed. Here,

the estimation of site-specific evolutionary rate may

depend on the evolutionary tree used (Mayrose et al. 2005).

The test statistic dN–dS was used to detect the codons that

have undergone positive selection, where dS was the

number of synonymous substitutions/site (s/S) and dN was

the number of non-synonymous substitutions per site (n/N).

Commonly, a species adapting into a new environments,

changes in the synonymous base substitutions occur almost

always at a much higher rate than those of non-synony-

mous substitutions (Kimura 1968; Duret 2008). A positive

value for the test statistic indicates that an excess of non-

synonymous substitutions. In this case, the probability of

rejecting the null hypothesis of neutral evolution (p value)

was calculated (Suzuki and Gojobori 1999; Pond and Frost

2005). The value of p \ 0.05 was considered as statisti-

cally significant at a 5 % level (data not shown). Normal-

ized dN–dS for the test statistic were also obtained using

the total number of substitutions in the tree (measured in

expected substitutions per site). It is useful for making

comparisons across the data sets.

Positive Darwinian selection analysis

Currently, availability of large number of genome, gene

and protein sequences of different organisms in the bio-

logical databases, initiated the development of numerous

statistical methods to analyze these sequences. As a result,

the rapid improvement in use of phylogenetics and molec-

ular selection programmes (Arunachalam et al. 2012a;

Dixit et al. 2010; Blanquer and Uriz 2007; Malickbasha

et al. 2010; Arunachalam et al. 2012b; Arunachalam et al.

2012c). Thus, the type of molecular evolution operating on

individual codon sites of NIVs were detected by computing

‘x’, the ratio between non-synonymous (Ka or dN) and

synonymous (Ks or dS) substitutions (Stern et al. 2007).

The ratio (x = dN/dS or Ka/Ks) has a straightforward

measurement of selective pressure at each codon of pro-

tein-coding genes that ‘x’ values of[1, 1 and\1 indicates

positive/diversifying selection, random drift/neutral evo-

lution and negative/purifying selection, respectively (Yang

and Bielawski 2000; Chen and Sun 2011). I used both

Datamonkey (a server running by HyPhy) (Delport et al.

2010) and Selecton programme, in which the codon-based

maximum likelihood (CML), branch-site (BS) and empir-

ical Bayesian evolutionary methods under different

substitution models were used for selection analysis.

Interestingly, the Datamonkey and Selecton were auto-

matically translating the codons into amino acid sequences

whenever the analysis was begin. In the beginning, gene

sequences of NIVs were used as input in Datamonkey,

subsequently this server was estimated the ‘x’ values for

each site that could be used to infer whether the amino acid

sites under positive Darwinian or purifying selection. The

selection analyses were made with state-of-the-art statisti-

cal methods include four independent CML methods

namely single-likelihood ancestor counting (SLAC), fixed

effects likelihood (FEL), random effects likelihood (REL)

(Pond and Frost 2005), and internal fixed effects likelihood

(IFEL) (Pond et al. 2006), and one BS evolutionary method

namely mixed effects model of episodic selection (MEME)

(Pond et al. 2011). The model selection test was carried out

for each method for each gene and the best model was

found (Table 1) among the 203 nucleotide substitution

models. During the SLAC, FEL, MEME and IFEL analy-

ses, the differential test significance levels were given as

0.1, whereas for REL, the empirical Bayes factors (BF)

were given as 50. The ‘x’ ratio of amino acid sites either

with p values B0.05 or BF C 20, were considered as sta-

tistically significant. The statistically reliable p values for

the above mentioned four tests indicate that the presence of

strong linear correlation between the approximate and the

maximum likelihood parameter estimates (Pond and Frost

2005).

As like Datamonkey, the Selecton 2.4 (Stern et al. 2007)

was also run with NIVs gene sequences to calculate the ‘x’

ratio of each amino acid site using empirical Bayesian

method (Yang et al. 2000; Mayrose et al. 2004) under three

different evolutionary models namely mechanistic empiri-

cal combination (MEC) (Doron-Faigenboim and Pupko

2006) [under JTT empirical amino acid matrix (Jones et al.

1992)], M8 (b ? w = 1) and M5 (c) (Yang et al. 2000).

For models MEC, M8 and M5, the number of categories

was set as 8, 8 and 14, respectively. I did compare the

models MEC and M8 (where the hypothesis allows positive

selection operating on the proteins) with null model M8a

(b ? w = 1) (Swanson et al. 2003) (where hypothesis does

not allows positive selection). The lower AICc score

indicates that the better fit of the model to the data, and

hence the model was considered as more justified. The

statistical reliability of the ‘x’ value was estimated by

measuring the confidence of the inference, for instance, for

positively selected site (x[ 1), if the corresponding lower

bound of the confidence interval was [1, then the

assumption of positive selection at this site was considered

as reliable. The result of ‘x’ inferences is projected on the

representative primary sequence of each protein of NIVs

[PB2, PB1, PA, HA, NP, NA, M1, NS1, NS2: A/Guam/

NHRC0002/2009(H1N1)/2009; M2: A/Guam/NHRC0001/
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2009(H1N1)/2009] (SF. 3). The different types of selection

are represented with seven colour scales. The yellow

shade’s (colors 1 and 2) indicate that the amino acid sites

with x[ 1. However, only sites (x[ 1) with the confi-

dence interval (lower bound) larger than 1 at 95 % level are

considered as statistically significant that are colored in

dark yellow, whereas the sites with light-yellow color

indicates that are not significant. Besides, the shades from

white to magenta (colors 3–7) indicate that the different

levels of x B 1 (Stern et al. 2007).

The functions for the amino acid sites under strong

positive selection pressure were identified by interpreting

the sites with functionally known amino acid sites involved

in immune epitopes, antiviral resistance and growth in

eggs. Experimentally verified amino acid sites involved in

immune epitopes were composed from the immune epitope

database (IEDB) and analysis resource (Vita et al. 2010).

Results and discussion

Inference of site-specific positive Darwinian selection

The results on selection pressure of individual amino acid

sites of all the proteins encoded by the NIVs genome are

shown in Table 1 and SF1, 2, 3. An excess of non-synon-

ymous substitutions over synonymous ones is an important

indicator of positive selection at molecular level. For PB2,

198 out of 759 codon sites are variable (26.1 %). Among

the 198 variable codon sites, the overabundance of non-

synonymous (dN) substitutions (positively selected values)

are observed in minority of sites (53 sites; 26.8 %) and the

excess of synonymous (dS) substitutions (negatively

selected values) are observed in majority of sites (145 sites;

73.2 %) (Table 1; SF1, 2). In this case, the probability of

rejecting the null hypothesis of neutral evolution is statis-

tically significant at a 5 % level (data not shown). The

selection profiles for all the other proteins are similar to

that for PB2, with the exception of M2. In M2 gene, among

19 variable codon sites, the excess of synonymous substi-

tutions are observed in minority of sites (8 sites; 42.1 %)

and the excess of non-synonymous substitutions are

observed in majority of sites (11 sites; 57.9 %). Our results

indicate that the speed of accumulations of synonymous

substitution rate is higher than those of non-synonymous

substitutions rate in all the genes/proteins, except in M2. It

suggests that the changes in the amino acid sequences

(non-synonymous) are most probably to reduce the func-

tionality of proteins than to increase it. As a result, they are

likely to lower the fitness of NIVs, and they could have a

lower probability of being fixed than those changes, which

do not change the amino acid sequences (synonymous).

These findings are in agreement with the hypothesis

suggested by Kimura (1968) and Duret (2008) who pro-

posed that when the organisms are adapting into a new

environment, changes in the synonymous base substitu-

tions occur almost always at a much higher rate than those

of non-synonymous substitutions. Positively (value)

selected non-synonymous substitutions might, however, be

involved in the NIVs adaptation in humans (Pond et al.

2006).

Moreover, the force of natural selection in each amino

acid site of NIVs proteins was inferred by calculating ‘x’

that had accumulated over the phylogenetic tree (data not

shown), because the direction and magnitude of natural

selection may vary during evolution. The phylogenetic

trees were inferred using the NJ method (Pond et al. 2006;

Mullick et al. 2011). It is noted that the REL analysis in

Datamonkey could not be performed due to the alignment

size restriction for PB2, PB1, PA, HA, NP and NA genes.

Totally, 71 amino acid sites in the entire proteins of NIVs

that underwent positive Darwinian selection (x [ 1) are

identified. Among the 71 positively selected sites, only 12

sites (highlighted with ‘^’) are identified with statistical

significance level as p B 0.05 for SLAC, FEL, IFEL,

MEME or as BF C 20 for REL (Pond et al. 2006), when

both CML and BS methods are used under best fit model in

Datamonkey (Tables 1, 3). In the case of positive Dar-

winian selection, the significance of one method alone is

not sufficient to infer that the amino acid site is subjected to

positive selection pressure. Hence, only sites that have

been detected by more than one method, are considered as

positively selected (Pond et al. 2006; Delport et al. 2010).

Accordingly, absolutely 9 (highlighted with ‘^^’) out of 12

statistically reliable amino acid sites are considered as

positively selected that are, position 194 (p value 0.05,

method—MEME; IFEL; MEC) of PB2, positions 587

(0.03, IFEL; MEC) and 736 (0.004, MEME; 0.01, IFEL) of

PB1, positions 7 (0.05, MEME; MEC; M5), 49 (0.03,

IFEL; MEC, M5) and 391 (0.004, IFEL; 0.03, FEL and

MEME; M5) of HA, position 10 (0.03, IFEL; M5) of M2

and positions 108 (BF 60.954, REL; M5) and 123 (64.414,

REL; M5) of NS1 (Table 1; SF3). Furthermore, for posi-

tions 108 and 123 of NS1, in addition to REL and M5,

model MEC also has supported that these sites are posi-

tively selected. However, model MEC is rejected by null

model M8a in likelihood ratio test (LRT) analysis (dis-

cussed in the next paragraph). Moreover, for the reliable

position 588 (0.04, IFEL) of PB2 and position 321 (0.004,

MEME) of PA, no parallel positively selected sites are

identified by other methods, whereas for position 30

(BF [ 1,000; REL) of M1, the parallel positively selected

sites are observed in MEC and M8 models, however, these

two models are rejected by null model M8a during LRT

analysis (Table 2; SF3). It should be noted that no sites are

inferred as positively selected for NP, whereas among 6
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and 2 positively selected sites in NA and NS2 respectively,

no statistically reliable sites are inferred (Table 1). The

presences of (highly variable) reliable positively selected

sites in NIVs proteins indicate that these sites have

undergone the amino acid fixations during the way of NIVs

evolution. These positively selected amino acid sites might

be interpreted as being an effect of molecular adaptation,

which confers an evolutionary advantage to the NIVs. Due

to increased adaptation to a new host, the selection pressure

could always be high, particularly in the early stage of viral

pandemics (Furuse et al. 2010). It is important to note that

the sites under positive selection, specifically in PB1, M1,

M2, NS1 and NS2 may remain tentative, because, the non-

overlapping regions in reading frame could only be con-

sidered for the analyses.

For selection analysis, initially, the Selecton programme

was allowed to perform a model tests for each protein with

different evolutionary models that assume different bio-

logical assumptions. Use of different evolutionary models

could permit contrasting the different hypotheses by com-

paring the likelihood ratio of a model, which assumes

positive selection (MEC and M8; except M5), to a model,

which does not allow positive selection (M8a). The LRT

was performed to identify, which model fits better to the

protein and, thus, the model that was considered as more

reasonable. Results of LRT (presence of lower AIC scores)

indicate that MEC model fits better to PB2, PB1, PA, HA

and NA proteins (Table 2). The LRT results also indicate

that the null model M8a is fits better to M1, NS1 and NS2

than those of models MEC/M8, MEC and MEC, respec-

tively. The LRT for models MEC and M8 could only be

performed against null model M8a, if the models MEC

and/or M8 show positively selected sites. It should be noted

that model MEC for NP and M2 proteins and model M8 for

all the proteins, except in M1, show no positively selected

sites. For M1 protein, model M8 shows single positively

selected site. Although, totally 4, 11, 2, 7, 4 and 13, 13, 9, 1

positively selected sites are inferred for PB2, PB1, PA, HA,

NA and HA, M2, NS1, NS2 proteins under MEC and M5

models, respectively (Table 1; SF3). However, no statisti-

cally reliable positively selected sites are identified in the

NIVs proteins, when empirical Bayesian method was used

under MEC, M8 and M5 models. That the lower bound of

the confidence interval (95 %) could not be [1 for

Table 2 Statistical values from different models of empirical Bayesian approach (Selecton) for each protein of NIV

Protein Selecton

MEC M8 M8a

PB2 Likelihood: -4,999.42

AIC: 10,008.87

– Likelihood: -5,004.24

AIC: 10,016.50

PB1 Likelihood: -4,791.07

AIC: 9,592.17

– Likelihood: -4,810.72

AIC: 9,629.46

PA Likelihood: -4,523.37

AIC: 9,056.77

– Likelihood: -4,525.72

AIC: 9,059.46

HA Likelihood: -4,121.70

AIC: 8,253.44

– Likelihood: -4,131.42

AIC: 8,270.86

NP – – –

NA Likelihood: -3,181.27

AIC: 6,372.58

– Likelihood: -3,183.79

AIC: 6,375.61

M1 Likelihood: -1,536.14

AIC: 3,082.36

Likelihood: -1,532.84 Likelihood: -1,533.02

AIC: 3,074.09 and likelihood: -1,533.02

M2 – – –

NS1 Likelihood: -1,608.98

AIC: 3,228.05

– Likelihood: -1,609.06

AIC: 3,226.18

NS2 Likelihood: -711.772

AIC: 1,433.71

– Likelihood: -712.097

AIC: 1,432.31

The likelihood ratio test could be performed against M8a null model, when the model MEC and/or M8 shows positively selected sites. It is noted

that MEC model for NP and M2 proteins and M8 model for all the proteins except M1 show no positively selected sites. The LRT AIC scores of

model MEC against M8a for PB2, PB1, PA, HA and NA shows significance level, here the AIC scores of MEC are lower than M8a indicates

significance test passed while for M1, NS1 and NS2 AIC scores of MEC are higher than M8a indicates MEC models is not suitable where the

M8a should be used

The likelihood ratio test of model M8 against M8a for M1 shows non-significance level. In this case, M8a model which had lower AIC score

could be used
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positively selected sites is the reason and, as a result, no

dark yellow colored amino acid sites are detected (SF3)

(Stern et al. 2007). It is quite obvious that the CML and BS

methods are reasonably better for inferring statistically

reliable positively selected sites than those of empirical

Bayesian method. However, empirical Bayesian approach

is inferred more reliable negatively selected sites. It vali-

dates the hypothesis that the positive selection is rare as it

occurs in few amino acid sites during the short time and is

hardly detected effectively when compare to a large

amount of neutral and purifying selections (Duret 2008;

Nei and Kumar 2000).

Inferring functions for the amino acid sites

under selection

Proteins are responsible for a group of biological functions,

and identification of biological functions of amino acid

sites would be helpful for assigning similar functions to

functionally unknown amino acid sites. Due to the lack of

prior vaccination, human immune system is unable to

ramp-up its responses against novel influenza viruses. As a

result, unexpected pandemic outbreaks occurred. Human

immune responses against viruses are highly depending on

the recognition of conserved epitopes of the viruses by

antibodies. A report shows that T-cells are protecting

humans in an enhanced way from viral infection and death

(Suzuki 2006; Cusick et al. 2009; Hughes and Nei 1988).

The B-cell epitopes (BCEs) of the viruses, typically consist

of 15–22 continuous/discontinuous amino acid sites that

could be recognized by respective B-cells producing anti-

bodies to neutralize the viral infectivity (Klein and Horejsi

1997). Use of 3-D structures of antigen–antibody com-

plexes and monoclonal antibodies, totally 5 (epitopes

A–E), 3 (epitopes A–C) and one BCEs were identified in

HA (Wiley et al. 1981), NA (Air et al. 1985) and M2

(Zebedee and Lamb 1988), respectively. The T-cell epi-

topes (TCEs) are classified into CD8? and CD4? that are

typically consist of 9 and 13–18 continuous amino acid

sites, respectively (Klein and Horejsi 1997). The infected

cells have CD8? and CD4? TCEs along with the human

leukocyte antigen (HLA) class I (includes HLA-A, -B, and

-C) and HLA class II (includes HLA–DQ and –DR), which

are recognized by cytotoxic T-lymphocytes (CTLs) and

helper T-cells (Th cells), respectively. These CTLs known

to exert cytotoxicity to infected cells. There are two kinds

of Th cells namely Th1 and Th2 that could activate the

CTLs and B-cells, correspondingly and might also exert

cytotoxicity (Suzuki 2006). Macken et al. (2001) were

identified CD8? and CD4? TCEs in influenza A virus

proteins by performing techniques like 3-D structural

analysis of HLA–epitope complexes, peptide-binding and

lytic assays. In addition to these natural immune responses

against viral infections, the artificial acquired immunity

could also be produced by vaccines. A typical method of

growing influenza viruses for vaccine production is through

the use of chick embryos eggs (Smith et al. 2008). More-

over, genome sequences of control virus and the isolate

from allantoic cavity of chick embryos egg was compared

and identified that the amino acids that facilitate the virus

to adapt and grow up in eggs (Hardy et al. 1995). Apart

from the natural and artifact immune responses, specific

drugs are also available to effectively eliminate the viruses

from infected patients. However, a few amino acids of

NIVs proteins involved in the resistance to drugs like

amantadine and oseltamivir, were identified by performing

inhibition assays (Suzuki 2006; Hay et al. 1985; Gubareva

et al. 2000). Thus, in the present study, in addition to

inferring positive Darwinian amino acid sites, there is also

a necessary to interpret these sites with experimentally

verified functionally known amino acid sites (Table 3).

Several reports show the positive selection on influenza

H1N1, H3N2 and H5N1 viruses (Matrosovich et al. 2000;

Suzuki 2006; Campitelli et al. 2006; Wolf et al. 2006; Shen

et al. 2009; Furuse et al. 2010; Janies et al. 2010; Chen and

Sun 2011; Li et al. 2011). Here, I have interpreted some of

the aforementioned previous studies with the present

results. There was a report by Suzuki (2006) shows that

totally 4 positively selected amino acid sites identified in

the entire proteins of human influenza A/H3N2 viruses

using parsimony method via ADAPTSITE. The amino acid

positions 220 and 229 of HA, position 131 of NP, and

position 370 of NA, were inferred as positively selected

when he analyzed 284, 246 and 345 sequences, respec-

tively. Suzuki (2006) inferred that the biological functions

of amino acid positions 229 of HA and 370 of NA as BCEs

epitope D and epitope A, respectively, however, no func-

tions were inferred for 220 of HA and 131 of NP. On the

other hand, Campitelli et al. (2006) reported that totally 16

positively selected amino acid sites in the entire proteins of

the human and avian influenza A/H5N1 viruses using

Bayesian method. The positively selected amino acid sites

17, 82, 199, 334, 336, 355 and 727 of PB2, positions 138,

140, 155, 156, 218 and 227 of HA and positions 171, 205

and 209 of NS1, were identified by evaluating 16, 192 and

31 sequences, respectively. Furthermore, they found that

the positively selected sites of HA were all involved in

BCEs, TCEs and growth in eggs. However, no functions

were inferred for the positively selected sites of PB2 and

NS1. Chen and Sun (2011) reported that 43 positively

selected sites for HA of subtype human H3N2 influenza

viruses using Bayes and Naive Empirical Bayes analyses

under M2, M3 and M8 models by analyzing 262 sequences

under seven data sets. They assumed that 42 out of 43

positively selected amino acid sites were involved in BCEs.

Notably, Furuse et al. (2010) reported totally 8, 4 and 2
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Table 3 Positively selected sites of NIV are inferred with groups of functionally known epitopes from IEDB

Protein Statistically
reliable amino
acid sites

dN–dSa p value/
Bayes
factorb

Functionally
known epitope
length (from-to)

IEDB-
epitope
IDc

Function(s) Host
organism(s)

Reference(s)

PB2 194 500.77 0.05 179–195 129880e TCE Homo sapiens Babon et al. (2009)

196–210d 6491 TCE (HLA-H-2-b;
HLA-H-2-Kb;
HLA-H-2-Db)

Mus musculus Crowe et al. (2006),
Thomas et al.
(2007)

PB1 587 190.16 0.03 586–599 97407 BCE Homo sapiens Khurana et al. (2009)

570–587 97707 TCE Homo sapiens Lee et al. (2008)

736 235.81 0.01 728–744 128898e TCE Homo sapiens Babon et al. (2009)

HA 7 1049.00 0.05 8–25d 145774 TCE Homo sapiens Cusick et al. (2009)

9–28d 152665 TCE HLA-
DRB1*15:01

Homo sapiens Yang et al. (2011)

49 146.31 0.03 36–53 95969 TCE Homo sapiens Cusick et al. (2009)

144810 TCE Homo sapiens Schanen et al. (2011)

43–60 95988 TCE HLA–DR1 Mus musculus Richards et al.
(2007)

TCE Homo sapiens Cusick et al. (2009)

144813 TCE Homo sapiens Schanen et al. (2011)

48–62 151036 BCE Homo sapiens Zhao et al. (2011)

38–52 150978 BCE Homo sapiens Zhao et al. (2011)

391 205.96 0.004 388–402 150964 BCE Homo sapiens Zhao et al. (2011)

384–424 97578 BCE Homo sapiens Khurana et al. (2009)

377–396 152474 TCE HLA-
DRB1*04:01

Homo sapiens Yang et al. (2011),
Trojan et al. (2003),
Roti et al. (2008)

386–402 129456 TCE HLA-H-2-
IAs

Mus musculus Nayak et al. (2010)

M2 10 1298.86 0.03 2–25 59319 BCE and TCE Homo sapiens Mozdzanowska et al.
(2003)

97651 BCE Homo sapiens Khurana et al. (2009)

7–21 97727 TCE Homo sapiens Lee et al. (2008)

2–24 59318 BCE Mus musculus Liu et al. (2004), Liu
and Chen (2005),
Wu et al. (2009)

TCE Mus musculus Wu et al. (2009)

NS1 108 0.44 60.95 (0.9279) 108–124 129134 TCE Homo sapiens Babon et al. (2009)

TCE HLA-DR1 Mus musculus Richards et al. (2009)

TCE H-2-IAb Mus musculus Nayak et al. (2010)

(108/123) 108–124 129134 TCE Homo sapiens Babon et al. (2009)

123 0.41 64.41 (0.9315) 122–130 2014 TCE HLA-
A*02:01

Homo sapiens Boon et al. (2002b,
2006), Kreijtz et al.
(2008)

No positively selected sites are inferred for PA, NP, NA, M1 and NS2
a It is an appropriately scaled dN– dS from the SLAC, FEL, IFEL and REL, whereas b? scaled from MEME
b It is show p value of the SLAC/FEL/IFEL/MEME or the Bayes factor value of the REL method (refer Table 1 also), here the posterior probabilities
are included just for reference
c Epitope identification code of functionally known amino acid sites (epitope) are obtained from immune epitope database and analysis resource
(IEDB) (www.immuneepitope.org)
d Adjacent positively selected sites
e These epitopes are categorized as negative in the qualitative measurement by assay/method used by the authors (for details reader can use these
epitope ids in IEDB) (Vita et al. 2010)
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amino acid sites under positive selection pressure on the

entire HA gene of seasonal H1N1, swine H1 and 2009

H1N1 viruses, respectively using only FEL method in

HyPhy (Pond et al. 2006). Among these, positions 187,

190, 192, 225 of seasonal H1N1, positions 83, 192 of swine

H1 and position 206 of 2009 H1N1 viruses are located at

antigenic sites. In addition, sites 190 and 225 of seasonal

H1N1 are also key determinants for effective binding to

human-like receptors (Kobasa et al. 2004; Stevens et al.

2006; Tumpey et al. 2007; Furuse et al. 2010). However,

the specific roles of rest of the amino acid sites of all above

the viruses are unknown. Li et al. (2011) reported totally 9

and 2 amino acid sites under positive selection for HA and

NA genes, respectively of pandemic influenza H1N1

viruses using SLAC and FEL methods in HyPhy. Inter-

estingly, 7 (186, 222, 261, 411, 451, 460, 530) out of 9 sites

of HA and 1 (453) out of 2 sites of NA are located within

the T-cell and/or B-cell antigenic regions. It should be

noted that sites 411, 451, 460, 530 of HA and 35, 453 of

NA could only be identified by FEL method, but not by

SLAC method. In the present study, totally 9 positively

selected sites are identified and among these 9 sites, single

position from PB2 (site 194) and M2 (10), two positions

from PB1 (587, 736) and NS1 (108, 123) and three posi-

tions from HA (7, 49, 391) are inferred (Table 1). How-

ever, no amino acid sites are inferred as positively selected

for PA, NP, NA, M1 and NS2. It should be noted that no

similar positively selected sites are identified when com-

paring the present result with the previous observations

(Suzuki 2006; Campitelli et al. 2006; Chen and Sun 2011;

Furuse et al. 2010; Li et al. 2011). It could be attributed to

the different sequences and different statistical methods,

used in the adaptive selection analyses. Differences occur

predominantly in use of different subtypes from different

seasons and the different statistical methods. It is noted that

variation in use of total number of sequences could not

affect the sensitivity of the analysis (Chen and Sun 2011).

Moreover, aforementioned previous analyses carried out by

using single method indicate that the positively selected

sites identified might remain tentative, because the multiple

tests were not approved. Whereas, the positively selected

sites identified in the present study are based on the mul-

tiple methods indicate that the amino acid sites under

strong selection strength be more reliable.

These positively selected sites were interpreted with

functionally known amino acid sites for Darwinian natural

selection (Hughes and Nei 1988). Experimentally deter-

mined functionally known epitopes along with epitope

identification codes, name of the host organisms (which

was used to expose the immunogen) and the literature

information interpreted in this study, were composed from

the IEDB (www.immuneepitope.org) (Vita et al. 2010).

The biological function of amino acid position 194 of PB2

is identified as TCEs (Babon et al. 2009) and in support of

this, the adjacent site 196 is also found to be involved

in TCEs (HLA-H-2–b; –Kb; –Db) (Crowe et al. 2006;

Thomas et al. 2007). Interestingly, the position of 587 of

PB1, 49 and 391 of HA and 10 of M2 are involved in both

BCEs and TCEs. However, sites 736 of PB1 and 108 and

123 of NS1 are found to be involved merely in TCEs. The

function of position 7 of HA is unknown; however, the

adjacent sites 8 and 9 involved in TCEs, suggesting that

site 7 might also be involved in this function (Table 3).

Totally, function for 8 out of 9 amino acid sites are exactly

inferred with known immune epitopes, whereas the two

adjacent sites are inferred for a rest of the site 7 of HA.

Among all the positively selected sites, there are single

positions from PB1 and M2 and 2 positions from HA are

found to be involved in BCEs. However, no sites from PB2

and NS1 are found to be involved in BCEs. Interestingly,

some of the sites involved in BCEs are also involved in

TCEs. Positively selected sites were positioned in the

B-cell and/or T-cell antigenic regions, might indicate that

positive selection from the hosts, possibly caused by vac-

cination and continuous use of anti-viral drugs. It might

lead to parallel variations in the T-cell and/or B-cell anti-

genic regions of the viruses. Hence, this would reduce the

efficiency of vaccines and have helped viruses to better

adapt to the new hosts (Li et al. 2011). All experimentally

derived epitopes available in IEDB are quantitatively cat-

egorized either as positive or negative, based on the B-cell

and/or T-cell assays (ELISA/FACs/bioassay etc.) ‘Immu-

nogen epitope relation’ reactions, where the epitopes of

influenza are recognized by antisera of influenza infected

host human/mouse; the immunogen that the host was

exposed to was the influenza virus (Vita et al. 2010). The

present results also show that few quantitatively negative

epitopes (Table 3), which can also be important to verify

experimentally, whether it will produce positive response

over against NIVs. It would be interesting to examine the

functions of these positively selected sites of NIVs,

experimentally, using site directed mutagenesis (Hoffmann

et al. 2000). Interestingly, no positively selected sites are

found to be involved in antiviral resistance and growth in

eggs.

Inference of amino acid sites involving in BCEs

In spite of more number of amino acid sites having shown

excess of non-synonymous substitutions (positive values)

(SF1, 2), the positive selection operating on only a few

amino acid sites involved in BCEs and TCEs is supported

by the x[ 1 with statistical significance (Table 1). It is

observed that positively selected sites for all the BCEs (the

p values for PB1, HA, M2 0.004–0.03) are generally effi-

cient when comparing to the sites involved in TCEs (the
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p values 0.05 for PB2, HA and Bayesian Factors

60.95–64.41 for NS1) (Table 3). Interestingly, it is found

that the sites involved in BCEs are also involved in TCEs.

Human immune responses against viruses, highly depends

on the recognition of conserved BCEs and TCEs by the

antibodies, exclusively, T-cells are protecting humans from

infection and death (Cusick et al. 2009). However, vaccines

are available for influenza viruses to induce immune

responses against BCEs (Cox et al. 2004). In support of this

issue, in the present study, the positively selected sites are

inferred for both BCEs and TCEs, and sites merely inferred

for TCEs (Table 3). It indicates that the both humoral and

cellular immune responses are engaged in elimination of

NIVs from infected humans (Thomas et al. 2006). The

present observation is consistent with the previous reports

(Thomas et al. 2006; Suzuki and Gojobori 2001) where

they also observed both type of immune responses against

influenza A viruses and hepatitis C viruses. Moreover, a

report states that all the negatively selected sites were

apparently involved in the neutralization of BCEs of polio

viruses, and the vaccine based on these sites was known to

be extremely successful (Suzuki 2004). In my case, totally

4 [single site for PB1, M2 and two sites for HA

(p 0.004–0.03)] amino acid sites under positive selection

are found to be involved in BCEs (Table 3). The total

numbers of positively selected sites engaged in BCEs are

lower; it is distinct to the case of polio viruses, where

majority of the negatively selected sites involved in BCEs

(Suzuki 2004). However, the p values of positively selected

sites are more reliable indicate that it is also be possible to

use these 4 positively selected sites as targets. It validate

the hypothesis that the amino acid sites under significant

functional constraints (small p values) are suitable targets

for developing vaccine and drugs with less vulnerable to

the formation of escape mutants (Bush et al. 1999; Smith

et al. 2004). In case, these positively selected sites will be

used as targets, the significance humoral immune responses

may be expressed towards the targets. As a result, gener-

ation of advantageous escape mutant’s could be bigger and

outcompete the functional restrictions; however, the fitness

of these mutants ought to be less if it is developed. In order

to prevent the generation of escape mutants, use of mixture

of several vaccines are recommended (Suzuki 2006). In the

context of these findings, further experimental study should

be focused on to determine, whether the total of 4 posi-

tively selected amino acid sites involving in BCEs will be

effective in making successful vaccine against NIVs.

There are three different approaches viz. CML, BS and

Bayesian used for determining individual amino acid site

of NIVs proteins whether under positive selection. Totally,

nine sites from PB2, PB1, HA, M2 and NS1, are inferred as

positively selected. Functions for positively selected sites

are inferred by interpreting these sites with experimentally

determined functionally known amino acid sites. Totally, 4

positively selected sites of PB1, HA and M2 are found to

be involved in BCEs. Besides, most of the sites involved in

BCEs are also involving in TCEs. Amino acid mutations in

many TCEs are expected to be advantageous, since, the

haplotype of HLA is restrict T-cells to recognize TCEs, but

it fails to restrict B-cells to recognize BCEs (Suzuki 2006;

Berkhoff et al. 2005). In support of this issue, majority of

the sites under positive selection forces are involving in

TCEs than those of BCEs. Apart from the use of positively

selected sites to identify the epitopes involved in the

elimination of viruses from patients, there are strong

functional constraints also operating on it. Generating

vaccines and drugs for multiple targets would be preferable

due to its less susceptibility to make escape mutants

(Suzuki 2006; Jin et al. 2005; Zharikova et al. 2005;

Venkatramani et al. 2006; Boon et al. 2002a; Gog et al.

2003; Kilbourne et al. 2002). In support of this hypothesis,

amino acid sites engaged in both BCEs and TCEs could be

measured as highly suitable targets, because these sites

playing a predominant role in inducing strong humoral and

cellular immune responses against targets. As explained in

aforementioned previous reports and in my studies, sites

involving in multiple functions might provide some valu-

able insights for the future design of highly protective

vaccines to improve the protection against pandemic

influenza infections. Moreover, further experiments are

required to validate the accurate role of these sites in

vaccine design and development.
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